Embodied neuromorphic intelligence

  • Barrett, L. Beyond the Brain: How Body and Environment Shape Animal 5and Human Minds (Princeton University Press, 2011). https://doi.org/10.1515/9781400838349. Barrett provides an in-depth overview on what shapes human and animal’s intelligent behaviour, exploiting their brains, but also bodies and environment. She describes how physical structure contributes to cognition, and how it employs materials and resources in specific environments.

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).

    PubMed  Google Scholar 

  • Sejnowski, T. J. The unreasonable effectiveness of deep learning in artificial intelligence. Proc. Natl Acad. Sci. (2020). https://www.pnas.org/content/early/2020/01/23/1907373117.full.pdf.

  • Jordan, M. I. Artificial intelligence—the revolution hasn’t happened yet. Harvard Data Sci. Rev. 1 (2019-07-01). https://hdsr.mitpress.mit.edu/pub/wot7mkc1.

  • Silver, D. et al. Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • Indiveri, G. & Liu, S.-C. Memory and information processing in neuromorphic systems. Proc. IEEE 103, 1379–1397 (2015).

    CAS  Google Scholar 

  • Indiveri, G. & Sandamirskaya, Y. The importance of space and time for signal processing in neuromorphic agents. IEEE Signal Process. Mag. 36, 16–28 (2019).

    ADS  Google Scholar 

  • Pasquale, G., Ciliberto, C., Odone, F., Rosasco, L. & Natale, L. Are we done with object recognition? the icub robot’s perspective. Robot. Autonomous Syst. 112, 260–281 (2019).

    Google Scholar 

  • Hadsell, R., Rao, D., Rusu, A. & Pascanu, R. Embracing change: continual learning in deep neural networks. Trends Cogn. Sci. 24, 1028–1040 (2020).

    PubMed  Google Scholar 

  • Liu, S.-C. & Delbruck, T. Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20, 288–295 (2010).

    PubMed  Google Scholar 

  • Chicca, E., Stefanini, F., Bartolozzi, C. & Indiveri, G. Neuromorphic electronic circuits for building autonomous cognitive systems. Proc. IEEE 102(September), 1367–1388 (2014). A description of neuromorphic computational primitives, their implementation in mixed-mode subthreshold CMOS circuits, and their computational relevance in supporting cognitive functions.

    Google Scholar 

  • Qiao, N. et al. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9, 141 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Qiao, N., Bartolozzi, C. & Indiveri, G. An ultralow leakage synaptic scaling homeostatic plasticity circuit with configurable time scales up to 100 ks. IEEE Transactions on Biomedical Circuits and Systems 11, 1271–1277 (2017).

  • Lazar, A. A. & Tóth, L. T. Perfect recovery and sensitivity analysis of time encoded bandlimited signals. IEEE Transactions on Circuits and Systems I: Regular Papers. 51, 2060–2073 (2004).

    MathSciNet  MATH  Google Scholar 

  • Karen, A., Scholefield, A., & Vetterli M. Sampling and reconstruction of bandlimited signals with multi-channel time encoding. IEEE Transactions on Signal Processing 68, 1105–1119 (2020).

    ADS  MathSciNet  Google Scholar 

  • Singh Alvarado, A., Rastogi, M., Harris, J. G. & Príncipe, J. C. The integrate-and-fire sampler: a special type of asynchronous σδ modulator. In 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2031–2034 (2011).

  • Akolkar, H. et al. What can neuromorphic event-driven precise timing add to spike-based pattern recognition? Neural Comput. 27, 561–593 (2015).

    MathSciNet  PubMed  MATH  Google Scholar 

  • Bartolozzi, C. et al. Event-driven encoding of off-the-shelf tactile sensors for compression and latency optimisation for robotic skin. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 166–173 (2017-09).

  • Scheerlinck, C. et al. Fast image reconstruction with an event camera. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2020-03).

  • Kramer, J. An integrated optical transient sensor. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 49, 612–628 (2002).

    Google Scholar 

  • Lichtsteiner, P., Posch, C. & Delbruck, T. A 128×128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566–576 (2008). This paper describes the first event-driven sensor used outside the designer’s lab. The DVS usability (robust hardware and friendly open source software) pushed the field of neuromorphic vision.

    ADS  Google Scholar 

  • Posch, C., Matolin, D. & Wohlgenannt, R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid-State Circuits 46, 259–275 (2011).

    ADS  Google Scholar 

  • Gallego, G. et al. Event-based vision: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 154–180 (2020). Comprehensive review of the plethora of different approaches used i event-driven vision, from adapting computer vision and DL, to biologically inspired vision.

  • Glover, A., Vasco, V. & Bartolozzi, C. A controlled-delay event camera framework for on-line robotics. In 2018 IEEE International Conference on Robotics and Automation (2018-05).

  • Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C. & Srinivasan, M. Asynchronous frameless event-based optical flow. Neural Netw. 27, 32–37 (2012).

    PubMed  Google Scholar 

  • Gallego, G., Rebecq, H. & Scaramuzza, D. A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In IEEE Int. Conf. Comput. Vis. Pattern Recog.(CVPR), vol. 1 (2018).

  • Zhu, A. Z., Yuan, L., Chaney, K. & Daniilidis, K. Unsupervised event-based learning of optical flow, depth, and egomotion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019-06).

  • Zhou, Y., Gallego, G. & Shen, S. Event-based stereo visual odometry. IEEE Transactions on Robotics 37, 1–18 (2021).

  • Vidal, A. R., Rebecq, H., Horstschaefer, T. & Scaramuzza, D. Ultimate SLAM? combining events, images, and imu for robust visual SLAM in hdr and high-speed scenarios. IEEE Robot. Autom. Lett. 3, 994–1001 (2018).

    Google Scholar 

  • Delbruck, T. Jaer open source project. http://jaerproject.org (2007).

  • Glover, A., Vasco, V., Iacono, M. & Bartolozzi, C. The event-driven software library for yarp with algorithms and icub applications. Front. Robot. AI. 4, 73 (2017).

    Google Scholar 

  • Mueggler, E., Huber, B. & Scaramuzza, D. Event-based, 6-DOF pose tracking for high-speed maneuvers. In Intelligent Robots and Systems (IROS), 2014 IEEE/RSJ International Conference on, 2761–2768 (IEEE, 2014).

  • Osswald, M., Ieng, S.-H., Benosman, R. & Indiveri, G. A spiking neural network model of 3Dperception for event-based neuromorphic stereo vision systems. Sci. Rep. 7, 1–11 (2017).

    Google Scholar 

  • Vasco, V. et al. Vergence control with a neuromorphic icub. In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2016), 732–738 (2016-11).

  • Iacono, M. et al. Proto-object based saliency for event-driven cameras. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 805–812 (2019).

  • Illing, B., Gerstner, W. & Brea, J. Biologically plausible deep learning. but how far can we go with shallow networks? Neural Netw. 118, 90–101 (2019).

    PubMed  Google Scholar 

  • Romano, F. et al. The codyco project achievements and beyond: toward human aware whole-body controllers for physical human robot interaction. IEEE Robot. Autom. Lett. 3, 516–523 (2018).

    Google Scholar 

  • Hamilton, T. J., Jin, C., Van Schaik, A. & Tapson, J. An active 2-d silicon cochlea. IEEE Trans. Biomed. circuits Syst. 2, 30–43 (2008).

    CAS  PubMed  Google Scholar 

  • Liu, S.-C., van Schaik, A., Minch, B. A. & Delbruck, T. Asynchronous binaural spatial audition sensor with 2 × 64 × 4 channel output. Biomed. Circuits Syst., IEEE Trans. 8, 453–464 (2014). Latest version of event-based cochlea. It only outputs data in response to energy at its input.

    Google Scholar 

  • Jiménez-Fernández, A. et al. A binaural neuromorphic auditory sensor for fpga: a spike signal processing approach. IEEE Trans. Neural Netw. Learn. Syst. 28, 804–818 (2017).

    PubMed  Google Scholar 

  • Schoepe, T. et al. Neuromorphic sensory integration for combining sound source localization and collision avoidance. In 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–4 (2019).

  • Anumula, J., Ceolini, E., He, Z., Huber, A. & Liu, S. An event-driven probabilistic model of sound source localization using cochlea spikes. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 (2018).

  • Li, X., Neil, D., Delbruck, T. & Liu, S. Lip reading deep network exploiting multi-modal spiking visual and auditory sensors. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 (2019).

  • Caviglia, S., Pinna, L., Valle, M. & Bartolozzi, C. Spike-based readout of posfet tactile sensors. IEEE Trans. Circuits Syst. I – Regul. Pap. 64, 1421–1431 (2016).

    Google Scholar 

  • John, R. et al. Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics. Nat. Commun. 11, 4030 (2020). Neuromorphic tactile system encompassing healable materials and memristive elements to perform proof-of-concept edge tactile sensing, demonstrated in a prosthetic application.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, C. et al. An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 30, 1801291 (2018).

    Google Scholar 

  • Lee, J.-H., Chung, Y. S. & Rodrigue, H. Long shape memory alloy tendon-based soft robotic actuators and implementation as a soft gripper. Sci. Rep. 9, 1–12 (2019).

    Google Scholar 

  • Rongala, U., Mazzoni, A., Camboni, D., Carrozza, M. & Oddo, C. Neuromorphic artificial sense of touch: Bridging robotics and neuroscience. In Bicchi A., B. W. (ed.) Robotics Research. Springer Proceedings in Advanced Robotics, chap. 3 (Springer, Cham., 2018).

  • Ward-Cherrier, B., Pestell, N. & Lepora, N. F. Neurotac: A neuromorphic optical tactile sensor applied to texture recognition. In International conference on Robotics and Automation (ICRA) 2020 (2020).

  • Nguyen, H. et al. Dynamic texture decoding using a neuromorphic multilayer tactile sensor. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–4 (2018).

  • Bergner, F., Dean-Leon, E. & Cheng, G. Design and realization of an efficient large-area event-driven e-skin. Sensors 20, (2020). https://www.mdpi.com/1424-8220/20/7/1965.

  • Motto Ros, P., Laterza, M., Demarchi, D., Martina, M. & Bartolozzi, C. Event-driven encoding algorithms for synchronous front-end sensors in robotic platforms. IEEE Sens. J. 19, 7149–7161 (2019).

    ADS  Google Scholar 

  • Lee, D.-H., Zhang, S., Fischer, A. & Bengio, Y. Difference target propagation. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 498–515 (Springer, 2015).

  • Zhao, J. et al. Closed-loop spiking control on a neuromorphic processor implemented on the icub. IEEE J. Emerg. Sel. Top. Circuits Syst. 10, 546–556 (2020). Example of the use of Spiking Neural Networks for the implementation of a cooperative/collaborative network for the control of a single joint of the iCub humanoid robot.

    ADS  Google Scholar 

  • Kreiser, R. et al. An on-chip spiking neural network for estimation of the head pose of the iCub robot. Front. Neurosci. 14, 551 (2020).

  • Panzeri, S., Harvey, C. D., Piasini, E., Latham, P. E. & Fellin, T. Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron 93, 491–507 (2017). Computational neuroscience that can support neuromorphic computing. Panzeri and colleagues explore the information content of spike patterns and their correlate with information about the input stimulus and about the behavioural choice of the subject. Understanding the encoding and decoding of the neural code can provide insights on how to design efficient and powerful Spiking Neural Network for robotics.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milde, M. B., Dietmüller, A., Blum, H., Indiveri, G. & Sandamirskaya, Y. Obstacle avoidance and target acquisition in mobile robots equipped with neuromorphic sensory-processing systems. In International Symposium on Circuits and Systems, (ISCAS) (IEEE, 2017).

  • Zibner, S. K. U., Faubel, C., Iossifidis, I. & Schoner, G. Dynamic neural fields as building blocks of a cortex-inspired architecture for robotic scene representation. IEEE Trans. Autonomous Ment. Dev. 3, 74–91 (2011). Theory of Dynamic Neural Fields and this can be used to develop cognitive robots. DNF is one of the proposed computational frameworks that can support the principled design of neuromorphic intelligent robots.

    Google Scholar 

  • Sandamirskaya, Y. Dynamic neural fields as a step toward cognitive neuromorphic architectures. Front. Neurosci. 7, 276 (2014).

  • Falotico, E. et al. Connecting artificial brains to robots in a comprehensive simulation framework: the neurorobotics platform. Front. Neurorobotics 11, 2 (2017).

    Google Scholar 

  • Patacchiola, M. & Cangelosi, A. A developmental cognitive architecture for trust and theory of mind in humanoid robots. IEEE Transactions on Cybernetics PP(99), 1–13 (2020).

  • Richter, M., Sandamirskaya, Y. & Schöner, G. A robotic architecture for action selection and behavioral organization inspired by human cognition. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, 2457–2464 (IEEE, 2012).

  • Ijspeert, A., Crespi, A., Ryczko, D. & Cabelguen, J. From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • M. Wensing, P. & Slotine, J.-J. Sparse control for dynamic movement primitives. IFAC-PapersOnLine 50, 10114–10121 (2017).

    Google Scholar 

  • Tieck, J. C. V. et al. Generating pointing motions for a humanoid robot by combining motor primitives. Front. Neurorobotics 13, 77 (2019).

    Google Scholar 

  • Ijspeert, A. J. Amphibious and sprawling locomotion: from biology to robotics and back. Annu. Rev. Control, Robot., Autonomous Syst. 3, 173–193 (2020).

    Google Scholar 

  • Furber, S., Galluppi, F., Temple, S. & Plana, L. The SpiNNaker project. Proc. IEEE 102, 652–665 (2014).

    Google Scholar 

  • Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). Biomed. Circuits Syst., IEEE Trans. 12, 106–122 (2018). Mixed-signal analog/digital multi-core neuromorphic processor for implementing spiking neural networks with biologically realistic dynamics.

    Google Scholar 

  • Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

    Google Scholar 

  • Neckar, A. et al. Braindrop: a mixed-signal neuromorphic architecture with a dynamical systems-based programming model. Proc. IEEE 107, 144–164 (2019).

    Google Scholar 

  • Rhodes, O. et al. spynnaker: A software package for running pynn simulations on spinnaker. Front. Neurosci. 12, 816 (2018).

  • Lin, C.-K. et al. Mapping spiking neural networks onto a manycore neuromorphic architecture. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation PLDI, 78–89 (ACM, 2018).

  • Stefanini, F., Sheik, S., Neftci, E. & Indiveri, G. Pyncs: a microkernel for high-level definition and configuration of neuromorphic electronic systems. Front. Neuroinfo. 8, 73 (2014).

  • Eliasmith, C. & Anderson, C. Neural engineering: Computation, representation, and dynamics in neurobiological systems (The MIT Press, 2004).

  • DeWolf, T., Stewart, T. C., Slotine, J.-J. & Eliasmith, C. A spiking neural model of adaptive arm control. Proc. R. Soc. B: Biol. Sci. 283, 20162134 (2016). Neural Engineering Framework applied to the adaptive control of a robotic arm. NEF is one of the mathematical frameworks that could support the development of neuromorphic robotics.

    Google Scholar 

  • Stagsted, R. K. et al. Event-based PID controller fully realized in neuromorphic hardware: a one dof study. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on (2020).

  • Zhao, J., Donati, E. & Indiveri, G. Neuromorphic implementation of spiking relational neural network for motor control. In International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2020, 89–93 (IEEE, 2020).

  • Linares-Barranco, A., Perez-Peña, F., Jimenez-Fernandez, A. & Chicca, E. ED-Biorob: a neuromorphic robotic arm with FPGA-based infrastructure for bio-inspired spiking motor controllers. Front. Neurorobotics 14, 590163 (2020).

  • Jimenez-Fernandez, A. et al. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs. Sensors 12, 3831–3856 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  • Perez-Peña, F., Leñero-Bardallo, J. A., Linares-Barranco, A. & Chicca, E. Towards bioinspired close-loop local motor control: a simulated approach supporting neuromorphic implementations. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS) (2017).

  • Donati, E., Perez-Pefia, F., Bartolozzi, C., Indiveri, G. & Chicca, E. Open-loop neuromorphic controller implemented on VLSI devices. In Biomedical Robotics and Biomechatronics (BIOROB), 7th IEEE International Conference on, 827–832 (2018-08).

  • Shadmehr, R. et al. The computational neurobiology of reaching and pointing: a foundation for motor learning (MIT press, 2005).

  • Huang, X. et al. Highly dynamic shape memory alloy actuator for fast moving soft robots. Adv. Mater. Technol. 4, 1800540 (2019).

    Google Scholar 

  • Schaffner, M. et al. 3d printing of robotic soft actuators with programmable bioinspired architectures. Nat. Commun. 9, 1–9 (2018).

    CAS  Google Scholar 

  • Schöner, G. Dynamical systems approaches to cognition. In Sun, R. (ed.) The Cambridge Handbook of Computational Psychology, 101–126 (Cambridge University Press, 2008).

  • Yang, C., Wu, Y., Ficuciello, F., Wang, X. & Cangelosi, A. Guest editorial: special issue on human-friendly cognitive robotics. IEEE Trans. Cogn. Developmental Syst. 13, 2–5 (2021).

    Google Scholar 

  • Milde, M. B. et al. Obstacle avoidance and target acquisition for robot navigation using a mixed signal analog/digital neuromorphic processing system. Front. Neurorobotics 11, 28 (2017).

    Google Scholar 

  • Thakur, C. S. et al. Large-scale neuromorphic spiking array processors: a quest to mimic the brain. Front. Neurosci. 12, 891 (2018). Review of large-scale emulators of neural networks that also discuss promising applications.

    PubMed  PubMed Central  Google Scholar 

  • Backus, J. Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs. Commun. ACM 21, 613–641 (1978).

    MathSciNet  MATH  Google Scholar 

  • Neckar, A. et al. Braindrop: a mixed-signal neuromorphic architecture with a dynamical systems-based programming model. Proc. IEEE 107, 144–164 (2018).

    Google Scholar 

  • Payvand, M., Nair, M. V., Müller, L. K. & Indiveri, G. A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation. Faraday Discuss. 213, 487–510 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • Dalgaty, T. et al. Hybrid neuromorphic circuits exploiting non-conventional properties of RRAM for massively parallel local plasticity mechanisms. APL Mater. 7, 081125 (2019).

    ADS  Google Scholar 

  • Chicca, E. & Indiveri, G. A recipe for creating ideal hybrid memristive-CMOS neuromorphic processing systems. Appl. Phys. Lett. 116, 120501 (2020). Guidelines and specifications for the integration of memristive devices on neuromorphic chips and their relevance in the design of truly low-power and compact building blocks to support always-on learning in neuromorphic computing systems.

    ADS  CAS  Google Scholar 

  • Horiuchi, T. A spike-latency model for sonar-based navigation in obstacle fields. Circuits Syst. I: Regul. Pap., IEEE Trans. 56, 2393–2401 (2009).

    Google Scholar 

  • Oster, M., Douglas, R. & Liu, S.-C. Computation with spikes in a winner-take-all network. Neural Comput. 21, 2437–2465 (2009).

    MathSciNet  PubMed  MATH  Google Scholar 

  • Häfliger, P. Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE Trans. Neural Netw. 18, 551–572 (2007).

    PubMed  Google Scholar 

  • Mostafa, H. & Indiveri, G. Sequential activity in asymmetrically coupled winner-take-all circuits. Neural Comput. 26, 1973–2004 (2014).

    PubMed  Google Scholar 

  • Indiveri, G. A current-mode hysteretic winner-take-all network, with excitatory and inhibitory coupling. Analog Integr. Circuits Signal Process. 28(September), 279–291 (2001).

    Google Scholar 

  • Donati, E., Krause, R. & Indiveri, G. Neuromorphic pattern generation circuits for bioelectronic medicine. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), 1117–1120 (2021).

  • Giulioni, M. et al. Robust working memory in an asynchronously spiking neural network realized in neuromorphic VLSI. Front. Neurosci. 5 (2012). http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2011.00149/abstract.

  • Neftci, E. et al. Synthesizing cognition in neuromorphic electronic systems. Proc. Natl Acad. Sci. 110, E3468–E3476 (2013). In this paper, one of the cited computational primitives (the Winner-Take-All) is used as building block to implement a cognitive function, performing real-time context-dependent classification of motion patterns observed by a silicon retina/decision making.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreiser, R., Aathmani, D., Qiao, N., Indiveri, G. & Sandamirskaya, Y. Organising sequential memory in a neuromorphic device using dynamic neural fields. Front. Neurosci. 12, 717 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Duran, B. & Sandamirskaya, Y. Learning temporal intervals in neural dynamics. IEEE Trans. Cogn. Developmental Syst. 10, 359–372 (2018).

    Google Scholar 

  • Liang, D. & Indiveri, G. A neuromorphic computational primitive for robust context-dependent decision making and context-dependent stochastic computation. IEEE Trans. Circuits Syst. II: Express Briefs 66, 843–847 (2019).

    Google Scholar 

  • Liang, D. & Indiveri, G. Robust state-dependent computation in neuromorphic electronic systems. In Biomedical Circuits and Systems Conference, (BioCAS), 2017, 108–111 (IEEE, 2017-10).

  • Risi, N., Aimar, A., Donati, E., Solinas, S. & Indiveri, G. A spike-based neuromorphic architecture of stereo vision. Front. Neurorobotics 14, 93 (2020).

    Google Scholar 

  • Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    CAS  PubMed  Google Scholar 

  • Douglas, R. & Martin, K. Recurrent neuronal circuits in the neocortex. Curr. Biol. 17, R496–R500 (2007).

    CAS  PubMed  Google Scholar 

  • Maass, W. On the computational power of winner-take-all. Neural Comput. 12, 2519–2535 (2000).

    CAS  PubMed  Google Scholar 

  • Rutishauser, U., Douglas, R. & Slotine, J. Collective stability of networks of winner-take-all circuits. Neural Comput. 23, 735–773 (2011).

    MathSciNet  PubMed  MATH  Google Scholar 

  • Indiveri, G. Neuromorphic analog VLSI sensor for visual tracking: Circuits and application examples. IEEE Trans. Circuits Syst. II 46, 1337–1347 (1999).

    Google Scholar 

  • Indiveri, G. Modeling selective attention using a neuromorphic analog VLSI device. Neural Comput. 12, 2857–2880 (2000).

    CAS  PubMed  Google Scholar 

  • Bartolozzi, C. & Indiveri, G. Selective attention in multi-chip address-event systems. Sensors 9, 5076–5098 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • Cook, M. & Bruck, J. Networks of relations for representation, learning, and generalization (2005). https://resolver.caltech.edu/CaltechPARADISE:2005.ETR071.

  • Cook, M., Jug, F., Krautz, C. & Steger, A. Unsupervised learning of relations. In Artificial Neural Networks–ICANN 2010, 164–173 (Springer, 2010).

  • Hahnloser, R. Emergence of neural integration in the head-direction system by visual supervision. Neuroscience 120, 877–891 (2003).

    CAS  PubMed  Google Scholar 

  • Johnson, J. S., Spencer, J. P. & Schöner, G. Moving to higher ground: The dynamic field theory and the dynamics of visual cognition. N. Ideas Psychol. 26, 227–251 (2008).

    Google Scholar 

  • Sandamirskaya, Y. & Conradt, J. Increasing autonomy of learning sensorimotortransformations with dynamic neural fields. In International Conference on Robotics and Automation (ICRA), Workshop “Autonomous Learning” (2013).

  • Sandamirskaya, Y., Zibner, S. K., Schneegans, S. & Schöner, G. Using dynamic field theory to extend the embodiment stance toward higher cognition. N. Ideas Psychol. 31, 322–339 (2013).

    Google Scholar 

  • Douglas, R., Koch, C., Mahowald, M., Martin, K. & Suarez, H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    ADS  CAS  PubMed  Google Scholar 

  • Compte, A., Brunel, N., Goldman-Rakic, P. S. & Wang, X.-J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    CAS  PubMed  Google Scholar 

  • Dayan, P. Simple substrates for complex cognition. Front. Neurosci. 2, 255 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Harris, K. D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng-yu, T. L., Poo, M.-m & Dan, Y. Burst spiking of a single cortical neuron modifies global brain state. Science 324, 643–646 (2009).

    ADS  Google Scholar 

  • Schölvinck, M. L., Saleem, A. B., Benucci, A., Harris, K. D. & Carandini, M. Cortical state determines global variability and correlations in visual cortex. J. Neurosci. 35, 170–178 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Rutishauser, U. & Douglas, R. State-dependent computation using coupled recurrent networks. Neural Comput. 21, 478–509 (2009).

    MathSciNet  PubMed  MATH  Google Scholar 

  • Hangya, B., Pi, H.-J., Kvitsiani, D., Ranade, S. P. & Kepecs, A. From circuit motifs to computations: mapping the behavioral repertoire of cortical interneurons. Curr. Opin. Neurobiol. 26, 117–124 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letzkus, J. J., Wolff, S. B. & Lüthi, A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88, 264–276 (2015).

    CAS  PubMed  Google Scholar 

  • Liang, D. et al. Robust learning and recognition of visual patterns in neuromorphic electronic agents. In Artificial Intelligence Circuits and Systems Conference, (AICAS), 2019 (IEEE, 2019-03).

  • Brandli, C., Berner, R., Yang, M., Liu, S.-C. & Delbruck, T. A 240 × 180 130 dB 3 μs latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circuits 49, 2333–2341 (2014).

    ADS  Google Scholar 

  • Posch, C. et al. Live demonstration: Asynchronous time-based image sensor (atis) camera with full-custom ae processor. In International Symposium on Circuits and Systems, (ISCAS), 1392 (IEEE, 2010).

  • Ajoudani, A. et al. Progress and prospects of the human–robot collaboration. Autonomous Robots 42, 957–975 (2018).

    Google Scholar 

  • Siva, S. & Zhang, H. Robot perceptual adaptation to environment changes for long-term human teammate following. The International Journal of Robotics Research 0278364919896625.

  • Tirupachuri, Y. et al. Towards partner-aware humanoid robot control under physical interactions. In (eds Bi, Y., Bhatia, R. & Kapoor, S.) Intelligent Systems and Applications, 1073–1092 (Springer International Publishing, 2020). Example paper on the complexity of the physical interaction of robots and humans, i.e. two highly dynamical systems that need to cooperate to achieve a common goal in unconstrained scenarios.

  • Udupa, S., Kamat, V. R. & Menassa, C. C. Shared autonomy in assistive mobile robots: a review. Disability and Rehabilitation: Assistive Technology 1–22 (2021). Review of the progress in the field of assistive mobile robotics that highlights the need for adaptation to the user intentions (to give full control to the user) and to the varying environment (for safety).

  • Magaña, O. A. V. et al. Fast and continuous foothold adaptation for dynamic locomotion through cnns. IEEE Robot. Autom. Lett. 4, 2140–2147 (2019).

    Google Scholar 

  • Gjorgjieva, J., Drion, G. & Marder, E. Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Curr. Opin. Neurobiol. 37, 44–52 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marom, S. Neural timescales or lack thereof. Prog. Neurobiol. 90, 16–28 (2010).

    PubMed  Google Scholar 

  • Abbott, L., Sen, K., Varela, J. & Nelson, S. Synaptic depression and cortical gain control. Science 275, 220–223 (1997).

    CAS  PubMed  Google Scholar 

  • Shapley, R. & Enroth-Cugell, C. Chapter 9 visual adaptation and retinal gain controls. Prog. Retinal Res. 3, 263–346 (1984).

    Google Scholar 

  • Turrigiano, G., Leslie, K., Desai, N., Rutherford, L. & Nelson, S. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    ADS  CAS  PubMed  Google Scholar 

  • Deiss, S., Douglas, R. & Whatley, A. A pulse-coded Communications infrastructure for neuromorphic systems. In (eds Maass, W. & Bishop, C.) Pulsed Neural Networks, chap. 6, 157–78 (MIT Press, 1998).

  • Boahen, K. A burst-mode word-serial address-event link – II: Receiver design. IEEE Trans. Circuits Syst. I 51, 1281–91 (2004).

    Google Scholar 

  • Serrano-Gotarredona, R. et al. AER building blocks for multi-layer multi-chip neuromorphic vision systems. In (eds Becker, S., Thrun, S. & Obermayer, K.) Advances in Neural Information Processing Systems, vol. 15 (MIT Press, 2005-12).

  • Rast, A. D. et al. Transport-independent protocols for universal AER communications. In International Conference on Neural Information Processing, 675–684 (Springer, 2015).

  • Ros, P. M., Crepaldi, M., Bartolozzi, C. & Demarchi, D. Asynchronous DC-free serial protocol for event-based AER systems. In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 248–251 (2015-12).

  • Waniek, N., Biedermann, J. & Conradt, J. Cooperative SLAM on small mobile robots. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO) 1810–1815 (2015).

  • Hwu, T., Krichmar, J. & Zou, X. A complete neuromorphic solution to outdoor navigation and path planning. Circuits and Systems (ISCAS), 2017 IEEE International Symposium on 1–4 (2017).

  • Tang, G. & Michmizos, K. P. Gridbot: an autonomous robot controlled by a spiking neural network mimicking the brain’s navigational system. Proceedings of the International Conference on Neuromorphic Systems 1–8 (2018).

  • Kreiser, R., Pienroj, P., Renner, A. & Sandamirskaya, Y. Pose estimation and map formation with spiking neural networks: towards neuromorphic slam. Intelligent Robots and Systems (IROS), 2018 IEEE/RSJ International Conference on (2018). Example of Spiking Neural Networks implemented on neuromorphic chips for the continuous estimation of pose and map formation, towards the implementation of SLAM.

  • Glatz, S., Martel, J., Kreiser, R., Qiao, N. & Sandamirskaya, Y. Adaptive motor control and learning in a spiking neural network realised on a mixed-signal neuromorphic processor. 2019 International Conference on Robotics and Automation (ICRA) 9631–9637 (2019).

  • Naveros, F., Luque, N. R., Ros, E. & Arleo, A. VOR adaptation on a humanoid icub robot using a spiking cerebellar model. IEEE Trans. Cybern. 50, 4744–4757 (2019).

    Google Scholar 

  • Dupeyroux, J., Hagenaars, J. J., Paredes-Vallés, F. & de Croon, G. C. H. E. Neuromorphic control for optic-flow-based landing of MAVs using the loihi processor. 2021 IEEE International Conference on Robotics and Automation (ICRA) 96–102 (2021).

  • Yan, Y. et al. Comparing Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control. Neuromorphic Computing and Engineering (2021). http://iopscience.iop.org/article/10.1088/2634-4386/abf150.

  • Zaidel, Y., Shalumov, A., Volinski, A., Supic, L. & Tsur, E. E. Neuromorphic NEF-based inverse kinematics and PID control. Front. Neurorobotics 15, 631159 (2021).

  • Strohmer, B., Manoonpong, P. & Larsen, L. B. Flexible spiking cpgs for online manipulation during hexapod walking. Front. Neurorobotics 14, 41 (2020).

    Google Scholar 

  • Gutierrez-Galan, D., Dominguez-Morales, J., Perez-Peña, F., Jimenez-Fernandez, A. & Linares-Barranco, A. Neuropod: a real-time neuromorphic spiking cpg applied to robotics. Neurocomputing 381, 10–19 (2020). Demonstration of how spiking neural networks can implement the Central Pattern Generator primitive in hardware and used for legged robot locomotion.

    Google Scholar 

  • Chan, V., Liu, S.-C. & van Schaik, A. AER EAR: A matched silicon cochlea pair with address event representation interface. IEEE Trans. Circuits Syst. I, Spec. Issue Sens. 54, 48–59 (2007).

    Google Scholar 

  • Hodgkin, A. & Huxley, A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–44 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahowald, M. & Douglas, R. A silicon neuron. Nature 354, 515–518 (1991).

    ADS  CAS  PubMed  Google Scholar 

  • Indiveri, G. Neuromorphic bistable VLSI synapses with spike-timing-dependent plasticity. Adv. Neural Inf. Process. Syst. (NIPS) 15, 1091–1098 (2003).

    Google Scholar 

  • Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1–23 (2011).

    Google Scholar 

  • Izhikevich, E. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003).

    CAS  PubMed  Google Scholar 

  • Mihalas, S. & Niebur, E. A generalized linear integrate-and-fire neural model produces diverse spiking behavior. Neural Comput. 21, 704–718 (2009).

    MathSciNet  PubMed  PubMed Central  MATH  Google Scholar 

  • Bartolozzi, C. & Indiveri, G. Synaptic Dynamics in Analog VLSI. Neural Comput 19, 2581–2603 (2007).

    PubMed  MATH  Google Scholar 

  • Boegerhausen, M., Suter, P. & Liu, S.-C. Modeling short-term synaptic depression in silicon. Neural Comput. 15(February), 331–348 (2003).

    PubMed  MATH  Google Scholar 

  • Ramachandran, H., Weber, S., Aamir, S. A. & Chicca, E. Neuromorphic circuits for short-term plasticity with recovery control. 2014 IEEE International Symposium on Circuits and Systems (ISCAS) 858–861 (2014).

  • Indiveri, G. Synaptic plasticity and spike-based computation in VLSI networks of integrate-and-fire neurons. Neural Inf. Process. – Lett. Rev. 11, 135–146 (2007).

    Google Scholar 

  • Mitra, S., Fusi, S. & Indiveri, G. Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI. Biomed. Circuits Syst., IEEE Trans. 3, 32–42 (2009).

    CAS  Google Scholar 

  • Wang, R. M., Hamilton, T. J., Tapson, J. C. & van Schaik, A. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks. Front. Neurosci. 9, 180 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Payvand, M. & Indiveri, G. Spike-based plasticity circuits for always-on on-line learning in neuromorphic systems. IEEE International Symposium on Circuits and Systems (ISCAS) 1–5 (2019).

  • Azghadi, M. R., Iannella, N., Al-Sarawi, S., Indiveri, G. & Abbott, D. Spike-based synaptic plasticity in silicon: Design, implementation, application, and challenges. Proc. IEEE 102, 717–737 (2014).

    Google Scholar 

  • Huayaney, F. L. M., Nease, S. & Chicca, E. Learning in silicon beyond STDP: a neuromorphic implementation of multi-factor synaptic plasticity with Calcium-based dynamics. IEEE Trans. Circuits Syst. I: Regul. Pap. 63, 2189–2199 (2016).

    Google Scholar 

  • Brink, S. et al. A learning-enabled neuron array IC based upon transistor channel models of biological phenomena. Biomed. Circuits Syst., IEEE Trans. 7, 71–81 (2013).

    CAS  Google Scholar 

  • Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • Covi, E. et al. Analog memristive synapse in spiking networks implementing unsupervised learning. Front. Neurosci. 10, 1–13 (2016).

    Google Scholar 

  • Roxin, A. & Fusi, S. Efficient partitioning of memory systems and its importance for memory consolidation. PLOS Computational Biol. 9, 1–13 (2013).

    Google Scholar 

  • Hassenstein, B. & Reichardt, W. Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Z. f.ür. Naturforsch. B 11, 513–524 (1956).

    Google Scholar 

  • Chicca, E., Lichtsteiner, P., Delbruck, T., Indiveri, G. & Douglas, R. Modeling orientation selectivity using a neuromorphic multi-chip system. International Symposium on Circuits and Systems, (ISCAS) 1235–1238 (2006).

  • Saal, H. P., Delhaye, B. P., Rayhaun, B. C. & Bensmaia, S. J. Simulating tactile signals from the whole hand with millisecond precision. Proc. Natl Acad. Sci. 114, E5693–E5702 (2017). Paper on the implementation of a simulator of the tactile perception of the human hand. The models used and the output of such a simulator are paramount to the design of neuromorphic system that can use a faithful simulation of the spike patterns given a certain stimulus, and of neuromorphic sensors that can replicate the same behaviour.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas, R., Martin, K. & Whitteridge, D. A canonical microcircuit for neocortex. Neural Comput. 1, 480–488 (1989).

    Google Scholar 

  • Binzegger, T., Douglas, R. & Martin, K. Topology and dynamics of the canonical circuit of cat V1. Neural Netw. 22, 1071–1078 (2009).

    CAS  PubMed  Google Scholar 

  • Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus, G. et al. The atoms of neural computation. Science 346, 551–552 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • Davies, M. Benchmarks for progress in neuromorphic computing. Nat. Mach. Intell. 1, 386–388 (2019).

    Google Scholar 

  • Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T. & Scaramuzza, D. The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM. Int. J. Robot. Res. 36, 142–149 (2017).

    Google Scholar 

  • Serrano-Gotarredona, T. & Linares-Barranco, B. Poker-dvs and mnist-dvs. their history, how they were made, and other details. Front. Neurosci. 9 (2015). http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2015.00481/abstract.

  • Orchard, G. et al. Hfirst: a temporal approach to object recognition. IEEE Trans. pattern Anal. Mach. Intell. 37, 2028–2040 (2015).

    PubMed  Google Scholar 

  • Amir, A. et al. A low power, fully event-based gesture recognition system. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 7243–7252 (2017).

  • Calabrese, E. et al. DHP19: Dynamic vision sensor 3D human pose dataset. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019).